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Abstract. This paper provides an introduction to the study of Loewner En-

ergy. We start by exploring the large deviation principle (LDP), which de-

scribes the exponential decay of the probability of certain rare events of fam-
ilies of probability measures. In large deviation theory, Schilder’s theorem

explains the LDP of Brownian motion. More specifically, it tells that the

Dirichlet energy arises naturally as the good rate function of the scaled Brow-
nian path, which almost surely has infinite Dirichlet energy. We then shift our

focus to the theory of chordal Schramm-Loewner Evolution (SLE), which is a

one-parameter family of probability measures on simple curves. The essence
of SLE relies on the Loewner transform, which is a deterministic way that

encodes a simple curve on a simply connected domain into a driving function.
We briefly review its theory and then discuss the LDP of chordal SLE analogy

to Schilder’s theorem. Loewner energy of a simple curve, which is defined as

the Dirichlet energy of its driving function, arises as a good rate function. We
finally discuss some properties of Loewner energy such as its reversibility.
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1. Large Deviation Principle

We first start building an understanding of the Large Deviation Principle based
on the following simple example.

Suppose that X is a random variable such that X ∼ N (0, σ2), the normal
distribution, so that its probability density function is given by

pX(x) =
1√
2πσ2

e−
x2

2σ2 .

For any ϵ > 0, we have that
√
ϵX ∼ N (0, σ2ϵ). Given M > 0, we can quantify how

rare the event {
√
ϵX ≥M} happens as ϵ→ 0+. Since

P(
√
ϵX ≥M) =

1√
2πσ2ϵ

∫ ∞

M

e−
x2

2σ2ϵ dx,

1
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it follows that

lim
ϵ→0+

ϵ logP(
√
ϵX ≥M) = lim

ϵ→0+
ϵ log(

1√
2πσ2ϵ

∫ ∞

M

e−
x2

2σ2ϵ dx)

= lim
ϵ→0+

−1

2
ϵ log(2πσ2ϵ) + ϵ log

∫ ∞

M

e−
x2

2σ2ϵ dx

= −M
2

2σ2
.

Let IX(x) := x2

2σ2 . Note that

(1.1) lim
ϵ→0+

ϵ logP(
√
ϵX ≥M) = − inf

x∈[M,∞)
IX(x),

and by similar deduction we have that

lim
ϵ→0+

ϵ logP(
√
ϵX ∈ [a, b]) = − inf

x∈[a,b]
IX(x).

Intuitively, we can say that the probability of the event {
√
ϵX ∈ [c, d]}, where

the interval [c, d] is very small and contains x, decays exponentially fast to −IX(x)
ϵ

as ϵ → 0. In fact, the main theory of the large deviation principle describes the
exponential decay of the probability of certain rare events of families of probability
measures.

We now give a precise definition of the large deviation principle. Let X be a
Polish space 1, B the Borel σ−algebra on X, and{µϵ}ϵ>0 a family of probability
measures on (X ,B).

Definition 1.2. A rate function is a lower semicontinuous function I : X →
[0,∞), i.e., for all α ≥ 0 the sub-level set {x : I(x) ≤ α} is a closed subset of X . A
good rate function is a rate function for which all the sub-level sets are compact
subsets of X .

Definition 1.3. A family of probability measures {µϵ}ϵ>0 on (X ,B) satisfies the
large deviation principle (LDP) of rate function I : X → [0,∞) if for all
open sets O ∈ B and closed sets F ∈ B,

lim sup
ϵ→0+

ϵ logµϵ(F ) ≤ − inf
x∈F

I(x); lim inf
ϵ→0+

ϵ logµϵ(O) ≥ − inf
x∈O

I(x).

Observe that by Equation (1.1), the distribution of {
√
ϵX}ϵ>0 satisfies the LDP

with good rate function IX .
We can show that if {µϵ}ϵ>0 satisfies LDP of some rate function, i.e., the rate

function exists, then it is unique.

Theorem 1.4. If a family of probability measures satisfies the LDP of some rate
function, then the rate function is unique.

Proof. Let I, J be two rate functions for {µϵ}ϵ>0. Suppose for contradiction that
I ̸= J. We can assume without loss of generality that there existsx > 0 such that
J(x) < I(x).

Take α > 0 such that J(x) < α < I(x). Since I is lower semicontinuous, there
exists ϵ > 0 such that if x ∈ {y : d(y, x) ≤ ϵ}, then I(x) > α. Let O = {y : d(y, x) <

1A Polish space is a separable, completely metrizable topological space.
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ϵ}. By definition of LDP it follows that

−J(x) ≤ −J(O)

≤ lim inf
ϵ→0+

ϵ logµϵ(O)

≤ lim sup
ϵ→0+

ϵ logµϵ(O)

≤ −I(O)

≤ −α

which contradicts to J(x) < α. □

A nice principle in the large deviation theory is that the LDP is preserved under
any continuous map, after possibly changing the rate function. We summarize it
as a theorem.

Theorem 1.5. (Contraction principle). Let X ,Y be two Polish spaces, f :
X → Y a continuous function, and {µϵ}ϵ>0 a family of probability measures on X
satisfying the LDP with a good rate function I : X → [0,∞). Let I ′ : Y → [0,∞)
be defined by I ′(y) := inf

x∈f−1{y}
I(x). Then, the family of pushforward probability

measures {f∗µϵ}ϵ>0
2 satisfies the LDP with good rate function I ′.

Proof. We first check that I ′ is a good rate function on Y. For α > 0, let ΦI′(α) :=
{y : I ′(y) ≤ α}. Since I is a good rate function, ∀y ∈ f(X ) we have that I ′(y) =
I(x) for some x ∈ f−1{y}, i.e., the infimum can be achieved. Hence, ΦI′(α) =
{f(x) : I(x) ≤ α} = f(ΦI(α)). Since I is a good rate function, ΦI(α) is compact.
Thus, ΦI′(α) is also compact as f is continuous.

Now, notice that for all E ⊂ Y we have that

(1.6) inf
y∈E

I ′(y) = inf
x∈f−1(E)

I(x).

Since f is continuous, the preimage of f preserves open (closed) sets. Hence, by
Equation (1.6) it follows that {f∗µϵ}ϵ>0 satisfies the LDP with good rate function
I ′. □

We end this section with an important example in the large deviation theory,
the scaled Brownian path. For T ∈ (0,∞), let

C0[0, T ] := {W : [0, T ] → R | t 7→Wt is continuous and W0 = 0}.

Definition 1.7. The Dirichlet energy of W ∈ C0[0, T ](resp. W ∈ C0[0,∞)) is
given by

IT (W ) :=
1

2

∫ T

0

|dWt

dt
|
2

dt

(
resp. I∞(w)L =

1

2

∫ T

0

|dWt

dt
|
2

dt

)
.

It turns out that the Dirichlet energy IT (W ) of W ∈ C0[0, T ] arises naturally as
the rate function of the scaled Brownian motion in the following way.

2This means that for all E ⊂ Y. we have that f∗µϵ = µϵ(f−1(E))
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Theorem 1.8. ( Schilder ) 3. Fix T ∈ (0,∞). The family of processes
{(
√
ϵBt)t∈[0,T ]}ϵ>0, viewed as a family of random functions in (C0[0, T ], ∥·∥), sat-

isfies the LDP with a good rate function IT , where IT (W ) = 1
2

∫ T

0
|dWt

dt |2dt if W is
absolutely continuous and ∞ otherwise.

2. Chordal Loewner Chain

Throughout the paper, we let H = {z ∈ C : Im(z) > 0} denote the upper
halfplane and D = {z ∈ C : |z| < 1} denote the unit disk.

The definition of SLE relies on the Loewner transform, which is a deterministic
way that encodes a simple curve on a simply connected domain into a driving
function. The general idea is that given a simple curve γ : [0,∞) → H, we can
parametrize it by a continuous time interval [0, T ) where T ∈ (0,∞) with γ0 = 0
and γt → H as t→ T . For each t ∈ [0, T ), we can associate with a unique conformal
surjection

gt : H \ γ[0,t] → H

such that at near infinity the expansion of gt satisfies

gt(z) = z +
2t

z
+ o(

1

z
).

We can extend gt continuously to the boundary γt and define Wt := gt(γt). We call
Wt the driving function of γ.

Given a simple curve we can define a family of unique conformal mappings in
the way above. Conversly, given a continuous function Wt we can find a family of
conformal maps (gt)t∈[0,T ) by solving the Loewner equation for each z ∈ H,

g0(z) = 0

∂tgt(z) =
2

gt(z)−Wt

and reconstruct a curve. Moreover, we shall see that if we chooseWt =
√
κBt where

κ is a parameter and Bt is the standard Brownian motion, then the random curve
encoded by it is the chordal SLEκ. The above arguments mostly rely on conformal
theory in complex analysis, and we now give a brief overview.

Definition 2.1. A set K ⊂ H is called a hull if K is compact and H \K is simply
connected.

Theorem 2.2. For any hull K, there exists a unique conformal surjection gK :
H \K → H such that

(2.3) lim
z→∞

(gk(z)− z) = 0

where the limit holds along any sequence zn ∈ H such that |zn| → ∞. Such gK
is said to have hydrodynamic normalization. Near infinity, gK has the expansion

gK(z) = z +
a1
z

+
a2
z2

+ ·

where the coefficients ak, k ∈ N, are real.
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Figure 1. The hydrodynamical conformal map gt.

The proof of this theorem relies on the Schwarz reflection principle for conformal
maps, which applies Schwarz reflection principle in Complex analysis. Both proofs
are in [5].

Definition 2.4. If K is a hull and gK satisfies the hydrodynamic normalization,
then the coefficient of 1

z in the expansion of gK is denoted by a1(K). We call a1(K)
as the half-plane capacity of K.

Proposition 2.5. For any hull K, the half-plane capacity satisfies the following
scaling rule and is translation invariance:

a1(λK) = λ2a1(K)

a1(K + x) = a1(K)

Proof. Suppose that gK satisfies the hydrodynamic normalization. Note that λgK( zλ )
is a conformal transformation from H\λK to H such that |λgK z

λ−z| → 0 as z → ∞.
Hence, λgK( zr ) = gλK by the uniqueness of gλK . Since

λgK(
z

λ
) = λ(

z

λ
+
a1(K)

z/λ
+ o(

1

z/λ
)) = z +

λ2a1(K)

z
+ o(

1

z
),

the scaling property follows.
Similarly, gK(z−x)+x is a conformal surjection from H\(K+x) to H such that

|gK(z− x) + x− z| → 0 as z → ∞. Hence, gK+x(z) = x+ gK(z− x) by uniqueness
of gK+x and the result follows from expanding x+ gK(z − x). □

For any hull K, we can think of the half-plane capacity a1(K) as a notion that
describes the size of K since it is monotone and non-negative.

It is not obvious that the half-plane capacity is non-negative. We can show this
by introducing another way of defining the half-plane capacity. Before that, we
need a classical result from conformal theory which states that Brownian motion is
conformally invariant.

Theorem 2.6. (Conformal Invariance of Brownian Motion) 4. Let D and
D′ be domains in C, and let ϕ : D → D′ be a conformal isomorphism. Fix z ∈ D,
and let z′ = ϕ(z). Let (Bt)t≥0 and (B′

t)t≥0 be complex Brownian motions starting
at z and z′, respectively. Define

T = inf{t ≥ 0 : Bt /∈ D};T ′ = inf{t ≥ 0 : B′
t /∈ D′}.

3For a detailed proof of this theorem, see [4].
4The proof requires Ito’s formula and is given in [9].
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Let T̃ =
∫ T

0
|ϕ′(Bt)|2dt and define for t < T̃

τ(t) = inf{s ≥ 0 :

∫ s

0

|ϕ′(Br)|2dr = t}; B̃t = ϕ(Bτ(t)).

Then, (T̃ , (B̃t)t<T̃ ) and (T ′, (B′
t)t<T ′) have the same distribution.

Proposition 2.7. If J ⊂ K are hulls, then a1(J) ≤ a1(K). Also, a1(J) = a1(K)
only if H ∩ (K \ J) = ∅.

Proof. Take any hull K and suppose gK satisfies the hydrodynamic normalization.
Let τ denote the exit time of a complex Brownian motion from H \ K, i.e.,

τ = inf{t ≥ 0 : Bt /∈ H \K}. We now define hcap(K) = lim
y∈∞

yE[Im(Bτ )] and we

will show that a1(K) = hcap(K).
Let Gt = gK(Bt) and Mt = Gt − Bt. Since Brownian motion is conformally

invariant, it follows that (Mt)t<τ is a continuous local martingale. Note that since
Gt → Bt as |Bt| → ∞, Mt is bounded. Also, Mt → Gτ −Bτ as t→ τ . Since τ is a
stopping time and by optional stopping theorem we have that, for B0 = z,

gK(z)− z = G0 −B0 = Ez[Gτ −Bτ ].

Let z = iy. Then,

yEiy[Im(Bτ )] = −yImEz[Gτ −Bτ ]

= Re(z(gK(z)− z)).

Hence, hcap(K) = a1(K). Monotonicity is easier. Suppose J ⊂ K are hulls. Note
that ggJ (K\J) is a conformal surjection H \ ggJ (K\J) → H, so ggJ (K\J) ◦ gJ is a con-
formal surjection H\K → H. Hence, by uniqueness of hydrodynamic nomalization
we have that gK = ggJ (K\J) ◦ gJ . Thus,

a1(K) = a1(J) + a1(ggJ (K\J)).

Therefore, monotonicity follows from non-negativity. □

Before moving on to relation between simple curve and hulls, we shall empha-
size that the half-plane capacity is in fact a continuous function of the hull. The
following lemma helps to prove the statement and is given in [5].

Lemma 2.8. For a hull K and ϵ > 0, let Kϵ be the smallest hull containing the
set H∩

⋃
z∈K B(z, ϵ). There exists C,R, α > 0 such that if Kϵ ⊂ B(z0, R) for some

z0 ∈ R, then

|a1(K)− a1(K
ϵ)| ≤ Cϵα.

We can associate a curve with a family of hulls in the following way: Let I be
an interval of the form [0,∞), [0, T ], or [0, T ) where T ∈ (0,∞). For any curve
γ : I → H that starts from the real line, define a family of hulls (Kt)t∈I associated
to γ(t), t ∈ I such that Kt = γ([0, t]) for any t ∈ I if γ is simple. If γ is not

simple, let Kt = H \Ht where Ht denotes the unbounded connected component of
H \ γ([0, t]).

With some constraints, we can reparametrize (Kt)t∈I so that a1(Kt) = 2t for
any t ∈ I. We say that this family is parametrized with the half-plane capacity. A
curve γ : [0, T ) → H is said to be parametrized with the half-plane capacity if the
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associated hulls are parametrized with the half-plane capacity. We summarize the
existence of reparametrization as a proposition.

Proposition 2.9. Suppose that (Kt)t∈I is growing in the sense that Ks ⊂ Kt

for s ≤ t and that the growth is continuous in the sense that for any ϵ > 0 and
S ∈ (0,∞) such that [0, S] ⊂ I, ∃δ > 0 such that Kt+δ ⊂ Kϵ

t for any 0 ≤ t ≤ S− δ.
Then, we can reparametrize (Kt)t∈I with the half-plane capacity.

Proof. We first note that since the half-plane capacity is continuous with respect to
hulls and is monotone, the map ϕ : t → a1(Kt) is continuous and non-decreasing.
By assuming K0 ∈ R and H ∩ (Kt \Ks) ̸= ∅ for any 0 ≤ s < t ≤ T , we have that
ϕ(0) = 0. Also, ϕ(t) > ϕ(s) for any 0 ≤ s < t ≤ T . Note that ϕ is an isomorphim
and thus we can set K ′

t = Kϕ−1(2t) so that a1(K
′) = ϕ(ϕ−1(2t)) = 2t. □

For a given family of hulls (Kt)t∈I , we set gt = gKt
, where if the family is

parametrized by the half-plane capacity then for each t ∈ [0, T ) we have that

gt(z) = z +
2t

z
+ · · ·

We will use gt to denote the conformal map with this form from now.
For a simple curve γ : [0, T ] → H that starts from the real line, what we stated

at the beginning of this section about the continuity of the driving function W (t)
can be summarized as follows.

Theorem 2.10. 5 Suppose that γ is parametrized by the half-plane capacity. Then

W (t) = lim
z→γ(t)

gt(z)

exists for any t ∈ [0, T ] and W is continuous. Here the limit is along any se-
quence zn ∈ H\γ(0, t]. Moreover, the hydrodynamically normalized conformal maps
(gt)t∈[0,T ] satisfy the Loewner differential equation

(2.11) ∂tgt(z) =
2

gt(z)−W (t)

with the initial value g0(z) = z.

Given a continuous, real-valued function Wt, it turns out that we can find a
family of conformal maps (gt)t∈[0,T ] that satisfies the Loewner equation (2.11) with
g0(z) = z and we call (gt)t∈[0,T ] the Loewner chain. Moreover, there is a growing
family of hulls parametrized with the half-plane capacity.

Definition 2.12. A Loewner chain is the solution gt of the Loewner equation
with a continuous driving term.

Note that if we fix z ∈ H, then the Loewner differential equation becomes an
ordinary differential equation (ODE) of time t

żt =
2

zt −Wt

with initial condition z0 = z.
Let τ(z) = inf{t ≥ 0 : lim inf

s→t
|zs −Ws| = 0} which is the maximum survival

time of the solution. Note that the map ζ 7→ 2
ζ−Wt

is continuous in t and Lipschitiz

5The full proof is rather technical and is in [5].
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continuous in ζ in {(t, ζ) ∈ [0, T ]×H : |ζ −Wt| ≥ ϵ} for ϵ > 0. Hence, the solution
to the ODE is unique and the solution at fixed time is a continuous function of the
initial condition.

Let gt(z) = zt for t ∈ [0, T ] ∩ [0, τ(z)) and z ∈ H \ {W0}. Let Ht = {z ∈ H :
τ(z) > t} and Kt = {z ∈ H : τ(z) ≤ t}. By some effort 6 we can show that gt|Ht

is
a conformal surjection and Kt is a hull. Moreover, there is a condition called the
local growth that can give a sufficient and necessary condition to the fact that gt
has a continuous driving term.

Theorem 2.13. 7 Let (Kt)t∈[0,T ] be a growing family of hulls and gt be the asso-
ciated conformal maps. Then the following statements are equivalent:

(Local growth) For all t ∈ [0, T ], a1(Kt) = 2t and for any ϵ > 0 there is δ > 0
such that for each t ∈ [0, T − δ], there exists a bounded connected set C ⊂ H \Kt

with diam(gt(C)) < ϵ such that C separates Kt+δ \Kt from infinity in H \Kt.
There is a continuous W (t), t ∈ [0, T ] such that gt is the solutioin of Equation

(2.11).

We end this section by presenting an example of a curve that motivates the
definition of SLE. Let Kt = [0, 2

√
ti] and let gt : H \ Kt be defined by gt(z) =√

z2 + 4t.
Note that gt is conformal and that |gt(z) − z| = |

√
z2 + 4t − z| → 0 as z → ∞.

Hence, gt satisfies the hydrodynamic normalization. Moreover, for each z ∈ H we
have that gt(z) is a unique solution of the ODE

∂tgt(z) =
2

gt(z)
; g0(z) = z.

Note that Theorem (2.10) states the existence of a continuous, real-valued func-
tion W that satisfies the chordal Loewner equation

∂tgt(z) =
2

gt(z)−Wt
; g0(z) = z,

so the curve γ(t) = 2
√
ti is the trivial case whereW = 0, which actually corresponds

to SLE0.

3. Chordal Schramm-Loewner Evolution

The Schramm-Loewner Evolution (SLE) is a one-parameter family of random
curves that plays an essential role in 2D random conformal geometry. One of the
most exciting applications of SLE is that it becomes a good candidate for describing
the scaling limits of many statistical models:

SLE2 ⇐⇒ Loop-erased random walk

SLE3 ⇐⇒ Critical Ising model interface

SLE6 ⇐⇒ Critical independent percolation interface

SLE8 ⇐⇒ Contour line of uniform spanning tree

By Schramm’s principle 8, SLE are the only random curves that satisfy con-
formal invariance and the domain Markov property, which is why SLE curves play

6See [5]
7The proof is in [5].
8See [5]
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a perfect role in describing interfaces arising from conformally invariant systems.
Moreover, SLEκ is almost surely generated, or traced out, by a continuous non-
self-crossing curve γκ called its trace. We now give a brief introduction to chordal
SLEκ.

We first define SLE using the Loewner chain, which follows from the previous
section. Then, we will define it as a random curve.

We now show that given a continuous stochastic process (Wt)t∈R≥0
, we can define

a stochastic Loewner chain (gt)t∈R≥0
corresponding to it, which makes the following

definition well-defined. We call (Wt)t∈R≥0
a driving process.

Definition 3.1. Let κ ≥ 0. A chordal SLEκ is a stochastic Loewner chain with a
driving process (Wt)t∈R≥0

equal to a Brownian motion with variance parameter κ,

i.e., Wt =
√
κBt where (Bt)t∈R≥0

is a standard one-dimensional Brownian motion.

To see the correspondence between a stochastic Loewner chain and a driving
process, we now show that under specific topological spaces, the mapping from the
continuous functions (Wt)t∈R≥0

to Loewner chains (gt)t∈R≥0
is continuous.

Lemma 3.2. For each δ > 0 and T > 0 there exists a constant C such that
the following holds. If g1(t, z) and g2(t, z) are solutions of the Loewner equation
(2.10) with the continuous driving terms (W1(t))t∈[0,T ] and (W2(t))t∈[0,T ] respec-
tively. Then they satisfy

|g1(T, z1)− g2(T, z2)| ≤ C(||W1 −W2||∞,[0,T ] + |z1 − z2])

for any z1, z2 such that Imgk(T, zk) > δ > 0.

Proof. Take δ > 0, T > 0, and z1, z2 ∈ H such that Imz1, z2 > δ. Let g1(t, z) and
g2(t, z) be solutions of the Loewner equation (2.10) with the continuous driving
terms (W1(t))t∈[0,T ] and (W2(t))t∈[0,T ] respectively. Let ψ(t) = g1(t, z1)− g2(t, z2).
We have that

∂tψ(t) = ζ(t)(ψ(t)−D(t))

where ζ(t) = 2
(g1(t,z1)−W1(t))(g2(t,z2)−W2(t))

and D(t) =W1(t)−W2(t).

Using an integrating factor, note that

∂t(e
−

∫ t
0
ζ(s)dsψ(t)) = −ζ(t)e−

∫ t
0
ζ(s)dsD(t)

Then,

ψ(t) = e
∫ t
0
ζ(s)dsψ(0)−

∫ t

0

ζ(u)e
∫ t
u
ζ(s)dsD(u)du.

Since |e
∫ t
0
ζ(s)ds| ≤ e

∫ t
0
|ζ(s)|ds, it follows that

|
∫ t

0

ζ(u)e
∫ t
u
ζ(s)dsD(u)du| ≤ ||D||∞,[0,T ]

∫ t

0

|ζ(u)|e
∫ u
0

|ζ(s)|dsdu

= ||D||∞,[0,T ](e
∫ t
0
|ζ(s)|ds − 1).

Notice that to prove the lemma it suffices to find an upper bound for
∫ t

0
|ζ(s)|ds

for any z1, z2 such that Imgk(T, zk) > δ > 0.
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For k ∈ {1, 2}, let Ik =
∫ t

0
2

|gk(t,zk)−Wk(t)|2 ds. By the Cauchy-Schwarz inequality

it follows that ∫ t

0

|ζ(s)|ds ≤
√
I1I2.

Notice that for any k ∈ {1, 2}, we have that

Ik =

∫ t

0

2

|gk(t, zk)−Wk(t)|2
ds

≤ log
Imzk

Imgk(t, zk)

≤ log
Imzk

max{δ,
√
((Imzk)2 − 4t)+}

where a+ = max{a, 0} which completes the proof. □

We let the topology of the driving functions be given by the locally uniform
convergence, and we say that the topology of the Loewner chains be given by the
following form of Caratheodory convergence.

Definition 3.3. A sequence of Loewner chains (gn(t, ·),Kn(t))t∈R≥0
) converges to

((g(t, ·),K(t))t∈R≥0
) if for any T > 0 and any compact J ⊂ H \KT , the sequence

of functions (t, z) 7→ gn(t, z) converges uniformly to (t, z) 7→ g(t, z) on [0, T ]× J .

A direct application of the above lemma is the following proposition, which
justifies the definition of Chordal SLEκ because the map Wt 7→ gt is measurable.

Proposition 3.4. Let K0 be a hull and G ⊂ H \ K0 be a compact set. Then
there exists a constant C > 0 such that if g1, g2 are two Loewner chains such that
Kk(T ) ⊂ K0 for k = 1, 2, then

||g1 − g2||∞,[0,T ]×G ≤ C||W1 −W2||∞,[0,T ].

On the other hand, we can also define SLEκ using the uniqueness of those
random curves satisfying conformal invariance and the domain Markov property.

Proof. Suppose that we have a arbitrary collection of probability measures (µ(U,a,b))
where U is a simply conencted domain and a ̸= b are two bundary points of U .
Assume that (µ(U,a,b)) is the law of a random curve γ : [0,∞) → C satisfying
γ([0,∞)) ⊂ U and γ(0) = a, γ(∞) = b.

Definition 3.5. Let ϕ∗ denote the pushforward defined by ϕ∗P = P ◦ ϕ−1. The
family (µ(U,a,b)) satisfies conformal invariance if for all (U, a, b),

ϕ∗µ
(U,a,b) = µ(ϕ(U),ϕ(a),ϕ(b)).

Definition 3.6. Let (Ft)t∈R≥0
be the filtration generated by (γ(t))t∈R≥0

. The

family (µ(U,a,b)) satisfies domain Markov property if for all (U, a, b), for every
t ∈ R≥0 and for any measurable set B in the space of curves,

µ(U,a,b)(γ|[t,∞) ∈ B|Ft) = µ(U\γ([0,t]),γ(t),b).



AN INTRODUCTION TO LOEWNER ENERGY 11

Now, if the family (µ(U,a,b)) satisfies conformal invariance, domain Markov prop-
erty, and that we can describe the curve γ by the Loewner equation in the sense
that there is a µ(H,0,∞) almost sure event on which γ satisfies Theorem (2.13),
then we can show that they are those where µ(H,0,∞) is the law of a random curve
whose Loewner driving process is equal to a constant multiple of a one-dimensional
Brownian motion. This is in fact the Schramm’s principle.

To see this, notice that we only need to investigate one of the measures from the
family since conformal invariance fixes the rest of them. We choose to work with
µ(H,0,∞). By Theorem (2.13), for each realization of γ there is a continuous driving
term Wt such that gt is the solution of the corresponding Loewner equation. Note
that the stochastic driving term Wt is the driving process of the random curve γ if
we reparameterize with the half-plane capacity.

We now show that (Wt)t∈R≥0
has independent and stationary increments, since

then by Probability knowledge we know that there eixsts a standard one-dimensional
Brownian motion Bt and α ∈ R≥0, β ∈ R such thatWt = αBt+βt. In other words,
Wt =

√
κBt + βt for some κ ≥ 0.

Let γ′(s) = gt(γ(t + s)) −Wt. Note that by Conformal invariance and domain
Markov property, γ′ is distributed as γ and independent of the realization of γ|[0,t].
The conformal map associated with the hull γ′([0, s]) is given by

g′s(z) = gt+s ◦ g−1
t (z +Wt)−Wt.

Notice that W ′
s =Wt+s −Wt is the driving process of γ′ since

∂sg
′
s(z) = (∂sgt+s)g

−1
t (z +Wt)

=
2

gt+s(g
−1
t (z +Wt))−Wt+s

=
2

g′s(z)− (Wt+s −Wt)
.

Then, it follows that (W ′
s) is independent of Ft and is distributed as (Wt), which

shows that Wt =
√
κBt + βt for some κ ≥ 0. Note that for γ(λ)(t) = λγ( t

γ2 ), it

has the same distribution as γ by conformal invariance of the measure. Its driving

process is given by W
(λ)
t = λW t

λ2
. Notice that (W

(λ)
t ) and (Wt) should have the

same distribution, and this is only true when β = 0.
Therefore Wt =

√
κBt and we are done.

□

There are several elementary properties of SLEκ which we summarized as fol-
lows.

Theorem 3.7. Let (Kt)t∈R≥0
be SLEκ, κ > 0, and (Wt)t∈R≥0

the corresponding
driving process which is a Brownian motion with respect to a filtration (Ft)t∈R≥0

.
Then, the SLEκ satisfies the following properties.

1. Scale invariance: For any λ > 0, (λKt/λ2)t∈R≥0
and (Kt)t∈R≥0

are equal in
distribution.

2. Conformal Markov property: For any s ∈ R≥0, the family of hulls

(K ′
τ,t)t∈R≥0

= (gs(Ks+t \Ks)−Ws))t∈R≥0

is independent of Fs, and (K ′
s,t)t∈R≥0

and (Kt)t∈R≥0
are equal in distribution.
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3. Strong conformal Markov property: For any almost surely finite stopping time
τ with respect to (Ft)t∈R≥0

, the family of hulls

(K ′
s,t)t∈R≥0

= (gτ (Kτ+t \Kτ )−Wτ ))t∈R≥0

is independent of Fτ , and (K ′
τ,t)t∈R≥0

and (Kt)t∈R≥0
are equal in distribution.

So far, we have defined SLEκ as a stochastic Loewner chain and we can also
derive SLEκ from Scharmm’s principle. It turns out that SLEκ can also be defined
as a random curve by Theorem (3.10).

Definition 3.8. A growing family of hulls (Kt)t∈R≥0
is generated by a curve γ if

H \Kt is the unbounded component of H \ γ[0, t] for all t ∈ R≥0.

Definition 3.9. For any Loewner chain gt, we define its trace by the function
γ(t) = lim

ϵ→0+
g−1
t (W (t) + iϵ) if it exists.

Theorem 3.10. For eack κ, the trace γ exists and is a random curve such that the
hulls (Kt)t∈R≥0

of SLEκ are generated by γ almost surely.

We end this section by presenting some phase transitions of SLEκ. In other
words, for different κ we can describe the behaviors of the random curves as simple,
non-crossing, or space-filling.

Theorem 3.11. Let the random curve γ : [0,∞) → H be SLEκ. Then,
1. For all 0 < κ ≤ 4, γ is simple and γ(0,∞) ∩ R = ∅.
2. For all 4 < κ < 8, γ is self-intersecting. In fact, it is not simple on any

interval: for any 0 ≤ t1 < t2 there exists t1 < s1 < s2 < t2 such that γ(s1) = γ(s2).
However, γ is not space-filling: for any z ∈ H, z /∈ γ[0,∞) almost surely.

3. For all κ ≥ 8, γ is not simple on any interval but is space-filling. Moreover,
γ is transient in the sense that |γ(t)| → ∞ as t→ ∞.

Figure 2. SLE with κ at different values.
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4. Loewner Energy

Recall that in the first section we discussed the large deviation principle (LDP)
of the scaled Brownian path. As we will see later in this section, the conecept of
Loewner energy arises when we investigate the LDP of Chordal SLEκ.

Notice that so far, we’ve only defined SLEκ on (H, 0,∞). We now define SLEκ

for a general simply connected domain with two distinguished boundary points.

Definition 4.1. (Chordal SLE in a general simply connected domain). Let
(Kt)t∈R≥0

be a chordal SLEκ and let D be a simply connected domain and a, b
be two boundary points of D with a ̸= b. We define chordal SLEκ in a domain
D going from a to b to be the image of (Kt)t∈R≥0

under any conformal onto map
ψ : H → D with ψ(0) = a and ψ(∞) = b.

Notice that extending the definition to a general simply connected domain is
simple because any conformal onto map ψ : H → D with the above properties only
affects the time parametrization of the corresponding hulls: since SLEκ is scale-
invariant and the conformal onto maps can only be of the form z 7→ ψ(λz), the
definition is unique up to a linear time change.

Definition 4.2. The Loewner energy of a simple curve γ is defined as the Dirich-
let energy of its driving function,

ID;a,b(γ) := IH;0,∞(ψ(γ)) := IT (W ),

where ψ is any conformal map from D to H such that ψ(a) = 0, ψ(b) = ∞ and W
is the driving function of ψ(γ), 2T is the total capacity of ψ(γ), and IT (W ) is the
Dirichlet energy.

Notice that the definition of Loewner energy of a simple curve also does not
depend on the choice of ψ: since the driving function also has the scaling property,
with different choices of ψ, W only changes to t 7→ λW t

λ2
. This has the same

Dirichlet energy as W .
Moreover, by definition, the Loewner energy is non-negative and ID;a,b(γ) = 0 is

achievable when γ = η := ψ−1(iR+): recall that at the end of section 2, we gave
an example of SLE0 in (H; 0,∞), which is the Loewner chain driven by W = 0,
i.e., iR+. Hence, the SLE0 in (D; a, b) is ψ−1(iR+). This is called the hyperbolic
geodesic. Note that the driving function of ψ(η) is W = 0 which makes ID;a,b(η) =
0.

For any curve γ, the Loewner energy need not be finite. Conversely, any real-
valued function W with finite energy does correspond to a simple curve γ.

Theorem 4.3. If γ is simple and ID;a,b(γ) <∞, then γ has infinite total capcity,
If a driving function W defined on R+ satisfies I∞(W ) < ∞, then W generates a
simple curve γ in (H; 0,∞).

One of the important motivations for the concept of Loewnery energy comes
from viewing the large deviations of chordal SLEκ as κ → 0+. Intuitively, this
means that

lim
κ→0+

P[SLEκ in (D;x, y) stays close to γ] ≈ exp(−ID;x,y(γ)

κ
).
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Recall that the large deviation principle depends on the space and topology
that we are working in. Motivated by Theorem (4.3), we can consider the space
X (D; a, b) of unparametrized simple curves with infinite total capacity in (D; a, b).
The topology we are working is induced by the Hausdorff metric.

Definition 4.4. The Hausdorff distance dh of two compact subsets F1, F2 ⊂ D
is defined as

dh(F1, F2) := inf

{
ϵ ≥ 0

∣∣∣∣F1 ⊂
⋃

x∈F2

Bϵ(x), F2 ⊂
⋃

x∈F1

Bϵ(x)

}
,

where Bϵ(x) is the Euclidean ball of radius ϵ centered at x ∈ D.

The Hausdorf metric on the set of closed subsets of a Jordan domain D is de-
fined vai the pullback by a conformal map D → D. For different conformal maps
the Hausdorff distance are different, but the topology induced by them is equiv-
alent since conformal automorphisms of D are Mobius transformations which are
uniformly continuous.

In large deviation language, we make precise about being ”staying close to” into
the following theorem, which is analogous to Schilder’s theorem.

Theorem 4.5. The family of distributions {Pκ}κ>0 on X (D; a, b) of the chordal
SLEκ curves satisfies the large deviation principle with good rate function ID;a,b.
That is, for any open set O and closed set F of X (D; a, b), we have

lim inf
κ→0+

κ logPκ[γκ ∈ O] ≥ − inf
γ∈O

ID;a,b(γ),

lim sup
κ→0+

κ logPκ[γκ ∈ F ] ≤ − inf
γ∈F

ID;a,b(γ)

and the sub-level set {γ ∈ X (D; a, b)|ID;a,b(γ) ≤ c} is compact for any c ≥ 0.

It seems like this result can be proved easily by Schilder’s theorem and Theorem
(1.5), but since we are working the Hausdorff metric and the map from continuous
driving function to the hulls it generates is not continuous under this topology, this
result requires more effort and is in [6].

It is natural to think that the Loewner energy of a curve from one boundary
point a to another boundary point b is equal to the energy of the same curve going
from b to a because it is proven that SLEκ curves with κ ≤ 4, have reservable
properties.

Theorem 4.6. 9 For κ ∈ [0, 4], the distribution of the trace γ of SLEκ in (H; 0,∞)
coincides with that of its image under ϕ : z 7→ − 1

z upon forgetting the time
parametrization.

In fact, it is true that Loewner energy is reversible which reveals a deterministic
nature of random curves.

Theorem 4.7. 10 For any simple curve γ ∈ X (D; a, b), we have that ID;a,b(γ) =
ID;b,a(γ).

9The proof is in [14].
10The proof is in [7].
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